Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Acta Pharmaceutica Sinica ; (12): 3477-3489, 2023.
Article in Chinese | WPRIM | ID: wpr-1004650

ABSTRACT

Radiopharmaceutical is an essential component of nuclear medicine and molecular imaging, as well as a key component of precision medicine. The United States Food and Drug Administration (FDA) has recently approved the marketing of several peptide-based radiopharmaceuticals, sparking a global trend of research in this area and propelling nuclear medicine into the precision theranostic era. This has created a new wave of technological competition in the field of nuclear medicine. It is the responsibility of Chinese scientists in the radiopharmaceutical field to capitalize on this opportunity, leverage the momentum, and strengthen their independent innovation capability in order to stay ahead in the future global nuclear science and technology competition. This review provides an overview of the remarkable progress made in the research, development, and translation of global peptide-based radiopharmaceuticals. It examines the advantages of peptide-based radiopharmaceuticals and outlines the current hot targets and progress in drug development in this field. Additionally, it proposes six opportunities for China to overtake others in the field of peptide-based radiopharmaceuticals and achieve technological self-reliance, based on interdisciplinary collaboration and independent innovation. Lastly, the future prospect of peptide-based radiopharmaceuticals is discussed.

2.
Acta Pharmaceutica Sinica ; (12): 2180-2192, 2023.
Article in Chinese | WPRIM | ID: wpr-999151

ABSTRACT

Cancer seriously threatens human life and health, it is urgent for the development of rapid detection, precise localization and effective treatment of tumors. Chemical fluorescent probes that are sensitive to tumor-specific microenvironments have important significance in tumor theranostics and a variety of such probes have been developed. In this review, we classified chemical fluorescent probes that are sensitive to tumor microenvironments according to biological characteristics and microenvironmental changes while combining spectroscopy or response mechanisms, and systematically introduced the research progress of chemical fluorescent probes with sensitivity to hypoxia, low polarity, high viscosity, abnormal pH values and abundant reactive oxygen species in tumor microenvironments, in order to provide references for the development and applications of these probes.

3.
Acta Pharmaceutica Sinica ; (12): 483-493, 2023.
Article in Chinese | WPRIM | ID: wpr-965611

ABSTRACT

In the research on cancer theranostics, most environment-sensitive drug delivery systems can only achieve unidirectional and irreversible responsive changes under pathological conditions, thereby improving the targeting effect and drug release performance of the delivery system. However, such irreversible changes pose potential safety hazards when the dynamically distributed delivery system returns to the blood circulation or transports to the normal physiological environment. Intelligent reversible drug delivery systems can respond to normal physiological and pathological microenvironments to achieve bidirectional and reversible structural changes. This feature will help to precisely control the drug release of the delivery system, prolong the blood circulation time, improve the targeting efficiency, and avoid the potential safety hazards of the irreversible drug delivery system. In this review, we describe the research progress of intelligent reversible drug delivery system from two main aspects: controlled drug release and prolonged blood circulation time/enhanced cellular internalization of drug.

4.
Chinese Journal of Biotechnology ; (12): 116-131, 2023.
Article in Chinese | WPRIM | ID: wpr-970363

ABSTRACT

Carbonic anhydrase IX (CAIX) is a transmembrane protein that is specifically overexpressed on the surface of hypoxic tumor cells. With the function of regulating the acidity of tumor cells both inside and outside, CAIX is closely related to tumor proliferation, invasion and metastasis. Therefore, CAIX is a promising target for tumor imaging and therapy. Herein, we summarized recent advances in CAIX-based tumor imaging, therapy and theranostics, and prospected future applications of using CAIX as an anti-tumor target.


Subject(s)
Carbonic Anhydrase IX , Carbonic Anhydrases/metabolism , Cell Line, Tumor
5.
Acta Pharmaceutica Sinica B ; (6): 544-559, 2021.
Article in English | WPRIM | ID: wpr-881153

ABSTRACT

Multi-modal therapeutics are emerging for simultaneous diagnosis and treatment of cancer. Polymeric carriers are often employed for loading multiple drugs due to their versatility and controlled release of these drugs in response to a tumor specific microenvironment. A theranostic nanomedicine was designed and prepared by complexing a small gadolinium chelate, conjugating a chemotherapeutic drug PTX through a cathepsin B-responsive linker and covalently bonding a fluorescent probe pheophorbide a (Ppa) with a branched glycopolymer. The branched prodrug-based nanosystem was degradable in the tumor microenvironment with overexpressed cathepsin B, and PTX was simultaneously released to exert its therapeutic effect. The theranostic nanomedicine, branched glycopolymer-PTX-DOTA-Gd, had an extended circulation time, enhanced accumulation in tumors, and excellent biocompatibility with significantly reduced gadolinium ion (Gd

6.
Korean Journal of Nuclear Medicine ; : 242-246, 2019.
Article in English | WPRIM | ID: wpr-786485

ABSTRACT

Liposome is one of the oldest yet most successful nanomedicine platforms. Doxil®, PEGylated liposome loaded with doxorubicin (DOX), was approved by the FDA in 1995 for the treatment of AIDS-related Kaposi's sarcoma, and it was the first approval for nanomedicine. Since then, liposome-based therapeutics were approved for the treatment of various diseases and many clinical trials are underway. The success of the liposome-based therapeutics was due to following factors: (1) ease of synthesis, (2) biocompatibility, (3) the ability to load both hydrophilic and hydrophobic agents, and (4) long circulation property after application of polyethylene glycol (PEG). Recently, more functionalities are introduced to liposome platform, which are (1) in vivo imaging probes for optical, magnetic resonance imaging (MRI), positron emission tomography (PET), and single-photon emission computed tomography (SPECT), (2) pH and temperature-sensitive lipid moiety, and (3) novel agents for photodynamic and photothermal therapies (PDT, PTT). These conventional and newly tested advantages make the liposome to be one of the most promising nanoplatforms for theranostics.


Subject(s)
Doxorubicin , Hydrogen-Ion Concentration , Liposomes , Magnetic Resonance Imaging , Nanomedicine , Polyethylene Glycols , Positron-Emission Tomography , Sarcoma, Kaposi , Theranostic Nanomedicine , Tomography, Emission-Computed
7.
Korean Journal of Nuclear Medicine ; : 164-166, 2019.
Article in English | WPRIM | ID: wpr-786476

ABSTRACT

Radiomics handles imaging biomarker from high-throughput feature extraction through complex pattern recognition that is difficult for human to process. Recent medical paradigms are rapidly changing to personalized medicine, including molecular targeted therapy, immunotherapy, and theranostics, and the importance of biomarkers for these is growing day by day. Even though biopsy continues to gold standard for tumor assessment in personalized medicine, imaging is expected to complement biopsy because it allows whole tumor evaluation, whole body evaluation, and non-invasive and repetitive evaluation. Radiomics is known as a useful method to get imaging biomarkers related to intratumor heterogeneity in molecular targeted therapy as well as one-size-fits-all therapy. It is also expected to be useful in new paradigms such as immunotherapy and somatostatin receptor (SSTR) or prostate-specific membrane antigen (PSMA)-targeted theranostics. Radiomics research should move to multimodality (CT, MR, PET, etc.), multicenter, and prospective studies from current single modality, single institution, and retrospective studies. Image-quality harmonization, intertumor heterogeneity, and integrative analysis of information from different scales are thought to be important keywords in future radiomics research. It is clear that radiomics will play an important role in personalized medicine.


Subject(s)
Humans , Biomarkers , Biopsy , Complement System Proteins , Immunotherapy , Membranes , Methods , Molecular Targeted Therapy , Population Characteristics , Precision Medicine , Prospective Studies , Receptors, Somatostatin , Retrospective Studies , Theranostic Nanomedicine , Weights and Measures
8.
Korean Journal of Nuclear Medicine ; : 167-171, 2019.
Article in English | WPRIM | ID: wpr-786475

ABSTRACT

Radionuclide therapy (RNT) stands on the delivery of radiation to tumors or non-tumor target organs using radiopharmaceuticals that are designed to have specific affinity to targets. RNT is recently called molecular radiotherapy (MRT) by some advocators in order to emphasize its characteristics as radiotherapy and the relevance of dosimetry-guided optimization of treatment. Moreover, RNT requires relevant radiation protection standards because it employs unsealed radionuclides and gives therapeutic radiation doses in humans. On the basis of these radiation protection standards, the development and use of radiopharmaceuticals for combined application through diagnostics and therapeutics lead to theranostic approaches that will enhance the efficacy and safety of treatment by implementing dosimetry-based individualization.


Subject(s)
Humans , Radiation Protection , Radioisotopes , Radiopharmaceuticals , Radiotherapy , Theranostic Nanomedicine
9.
Korean Journal of Nuclear Medicine ; : 83-85, 2019.
Article in English | WPRIM | ID: wpr-786466

ABSTRACT

The foundations of nuclear medicine in Vietnam were established from 1970. Until now, after 48 years of development, in Vietnam, we have some basic equipment including 31 SPECT, 4 SPECT/CT machines, 11 PET/CT scanners, five cyclotrons, and one nuclear reactor.Many nuclearmedicine techniques in diagnosis and treatment have been routinely performed at provincial and central level health facilities such as tumor scintigraphy, thyroid scintigraphy, bone scintigraphy, kidney scintigraphy, cardiac scintigraphy, and radio-isotope therapy with I-131 and P-32. Selective internal radiation therapy with Y-90 microsphere and I-125 radioactive seed implantation has been also successfully applied in some big hospitals. However, there are still many difficulties for Vietnam as the lack of new widely used radioisotopes such as Ga-67, Cu-64, Samarium-153, and Lutetium-177 and the lack of nuclear medicine specialists. In the future, we are putting our efforts on the applications of new isotopes in diagnosis and treatment of cancers (theranostic) like Ga-68-DOTATATE, Lutetium-177-DOTATATE, Ga-68-PSMA, and Lutetium-177-PSMA, equipping modern nuclear medicine diagnostic tools, strengthening the human resources training in nuclear medicine. At the same time, we are trying our best to strengthen the cooperation with international nuclear medicine societies in over the world.


Subject(s)
Humans , Cyclotrons , Diagnosis , Foundations , Health Facilities , Isotopes , Kidney , Microspheres , Nuclear Medicine , Positron Emission Tomography Computed Tomography , Radioisotopes , Radionuclide Imaging , Specialization , Theranostic Nanomedicine , Thyroid Gland , Tomography, Emission-Computed, Single-Photon , Vietnam
10.
Korean Journal of Nuclear Medicine ; : 92-95, 2019.
Article in English | WPRIM | ID: wpr-786464

ABSTRACT

The term theranostics is a combination of a diagnostic tool that helps to define a right therapeutic tool for specific disease and paves the approach towards personalized or precision medicine. In Nuclear Medicine, a diagnostic radionuclide is labeled with the target and once expression is documented, the same target is labeled with a therapeutic radionuclide and treatment is executed. The theranostic concept was applied first time in 1964 in the treatment of thyroid cancer with I-131 (RAI). Over the years, other theranostic radiotracers became available indigenously from the Bhabha Atomic Research Centre (BARC) in the country. Currently Lu-177 is produced in India and peptides like DOTATATE and PSMA are available in a kit form indigenously. At the present time, the radionuclide therapies of oncological disorders which are being performed in India are mainly for neuroendocrine tumors (NET) and metastatic castration resistant prostate cancer (mCRPC). The main constraints pertaining to this concept is the cost of treatment and awareness among the clinicians which are gradually being taken care of by the private health insurance and our participation in disease management group meetings respectively. The theranostic concept has become popular over the years and has the potential for sustained growth.


Subject(s)
Humans , Castration , Disease Management , Group Processes , India , Insurance, Health , Neuroendocrine Tumors , Nuclear Medicine , Peptides , Precision Medicine , Prostatic Neoplasms , Theranostic Nanomedicine , Thyroid Neoplasms
11.
Korean Journal of Nuclear Medicine ; : 102-107, 2019.
Article in English | WPRIM | ID: wpr-786462

ABSTRACT

BACKGROUND AND CURRENT STATUS OF THERANOSTICS: Therapeutic nuclear medicine (NM) in Bangladesh began in the early 1980s with the application of radioactive iodine for treatment of thyroid cancer and primary hyperthyroidism. Since then, NM practice has remarkably developed in the country with the advancement of instrumentation, radiopharmacy, and information technology. The government took the initiative to establish four PET-CTcenters at different NMcenters, including one at the National Institute of Nuclear Medicine and Allied Sciences (NINMAS). A further development is the installation of a cyclotron center (18-MeV cyclotron) at NINMAS by the government's fund. Currently, NM is providing good health services to oncology patients throughout the country. More than 20 NM centers are functioning in different parts of the country, and therapeutic NM has an important place. However, conventional radioactive iodine still remains the major theranostic application.CHALLENGES AND FUTURE PERSPECTIVE: The expansion and development of therapeutic NM for other cancers have been limited due to a number of challenging factors. A brief overview of the history and current status ofNMin Bangladesh is presented here with an examination of factors that pose as obstacles to the introduction and development of new therapeutic technologies. Finally, future perspectives are discussed with ways to mitigate existing problems and challenges.


Subject(s)
Humans , Bangladesh , Cyclotrons , Financial Management , Health Services , Hyperthyroidism , Iodine , Nuclear Medicine , Theranostic Nanomedicine , Thyroid Neoplasms
12.
Korean Journal of Nuclear Medicine ; : 108-114, 2019.
Article in English | WPRIM | ID: wpr-786461

ABSTRACT

Owing to its highly biocompatible property as naturally produced nanoscale particle and drug carrying ability, exosome has attracted much interest in the biomedical area. Versatile functions of exosome in biological system play an important role in elucidating mysterious and unknown biological processes and pathological disease progression. For usage of exosome as brain disease therapeutics, even though the ability of exosomes crossing blood brain barrier (BBB) is not well clearly proven, the small size and their own characteristics possessing cell-derived molecular contents may provide great and beneficial tools for brain delivery and brain-associated disease therapy. A variety of trials related to bioapplications using stem cell-derived exosome in regenerative therapy or autologous exosome shuttling inhibitor targeting brain disease-associated protein marker enhance possibility of exosome toward clinical application. The radionuclide PETor SPECT imaging of radiolabeled exosome will be clearly able to provide accurate clues for analyzing their whole body distribution, targeting efficacy, and the degree of non-specific tissue uptake. In this perspective, the practical information on thranostics of exosome for brain delivery and therapy is offered and radionuclide-based exosome applicability will be dealt with.


Subject(s)
Biological Phenomena , Blood-Brain Barrier , Brain Diseases , Brain , Disease Progression , Exosomes , Lifting , Radionuclide Imaging , Theranostic Nanomedicine , Tomography, Emission-Computed, Single-Photon
13.
Korean Journal of Nuclear Medicine ; : 7-10, 2019.
Article in English | WPRIM | ID: wpr-786454

ABSTRACT

Exploring the unknown is one of the key factors that lead to great discoveries in mankind history.With the advances in medicine and the development of new approaches towards patient care, like next-generation sequencing and patient-centered care, the need for treatments tailored to patient through personalized medicine has become more compelling. Theranostics has been introduced as a combination of a diagnostic tool and a therapeutic tool on the same vector for a specific disease, to facilitate personalized medicine. Nuclear medicine has shown the capability of providing a strong platform for this new approach through its arms, molecular imaging, and targeted molecular therapies. Though the prototype of theranostics has been practiced in Jordan since decades in the field of diagnosis and treatment of well-differentiated thyroid cancer, recently, the King Hussein Cancer Center (KHCC), a leading and comprehensive cancer center in Jordan and in the Middle East, has leaped forward to introduce the new approaches of theranostics through the nuclear medicine applications. This paper sheds the light on the most important aspects of this new theranostics practice in Jordan such as peptide receptor radionuclide therapy (PRRT) and prostate-specific membrane antigen (PSMA)–based theranostics.


Subject(s)
Humans , Arm , Diagnosis , Jordan , Membranes , Middle East , Molecular Imaging , Molecular Targeted Therapy , Nuclear Medicine , Patient Care , Patient-Centered Care , Precision Medicine , Receptors, Peptide , Theranostic Nanomedicine , Thyroid Neoplasms
14.
Korean Journal of Nuclear Medicine ; : 11-13, 2019.
Article in English | WPRIM | ID: wpr-786453

ABSTRACT

Nuclear theranostics functions as a bridge which connects targeted diagnosis to targeted therapy, just like Turkey functions as a geographical bridge which connects Asia to Europe. This unique geographical site of the country plays an important role with regard to introduction of novel scientific and technologic improvements, which originate from one continent to another, in the era of accelerated information. The first nuclear medicine practice in Turkey started in the beginning of 1950s with the first radioiodine treatment, which actually was a debut for nuclear theranostics in Turkey, years before many other countries in the world. For the time being, along with radioiodine treatment, many other theranostic applications such as I-131 MIBG treatment, Lu-177/Y-90 DOTA peptide treatment, Lu-177 PSMA treatment, Y-90 microsphere treatment, and bone palliative treatment are being performed in many centers countrywide. As science and technology improves, novel theranostic applications are eagerly awaited to be introduced in near future. This paper summarizes the story of nuclear theranostics in Turkey and aims to give an overview on the current status of theranostic applications in Turkey.


Subject(s)
3-Iodobenzylguanidine , Asia , Diagnosis , Europe , Microspheres , Nuclear Medicine , Palliative Care , Theranostic Nanomedicine , Turkey
15.
Korean Journal of Nuclear Medicine ; : 30-32, 2019.
Article in English | WPRIM | ID: wpr-786451

ABSTRACT

Medical managements are becoming personalized while diseases are being understood at the molecular level. Nuclear medicine is one of the fields actively contributing to this development. In particular, theranostics, a combinatorial term for therapy and diagnostics, enables accurate imaging and subsequent targeted radionuclide treatment. Due to its high impact in healthcare, many countries have begun to offer Ga-68 PET/CTscans and Lu-177 therapies. The Philippines has followed suit through the initiative of this author and able support of the administration and staff of St. Luke's Medical Center. The Ga-68 DOTATATE and PSMA PET/CT scans became officially available in January 2018 while the first peptide receptor radionuclide therapy for neuroendocrine tumor and first PSMA radioligand therapy for prostate cancer occurred in May and June 2018, respectively. Amidst past, present, and future challenges, theranostics has emerged in the Philippines, offering hope to cancer patients in the country.


Subject(s)
Humans , Delivery of Health Care , Hope , Neuroendocrine Tumors , Nuclear Medicine , Philippines , Positron Emission Tomography Computed Tomography , Prostatic Neoplasms , Receptors, Peptide , Theranostic Nanomedicine
16.
Korean Journal of Nuclear Medicine ; : 33-34, 2019.
Article in English | WPRIM | ID: wpr-786450

ABSTRACT

Nuclear medicine in Indonesia has a quite long history since the late 1960s. There are some problems and obstacles that have to be solved and overcome in order to develop nuclear medicine services, spread the services to reach every target area, and implement new novel therapeutic nuclear medicine as well. The right strategy and strong effort should be performed for a successful result. Theranostics nuclear medicine will play a more prominent role in the management of cancer patients.


Subject(s)
Humans , Indonesia , Nuclear Medicine , Theranostic Nanomedicine
17.
Korean Journal of Nuclear Medicine ; : 35-37, 2019.
Article in English | WPRIM | ID: wpr-786449

ABSTRACT

Targeted radionuclide therapy (TRT) is unique because of its efficacy and its theranostic feature in the era of precision medicine. So far, introduction of new TRT has not been going well in Japan due to several reasons including strict regulations, shortage of facilities for TRT, and insufficient reimbursement for TRT in clinic. Japanese community had several strategies to develop TRT in these 10 years, including the establishment of the National Conference for Nuclear Medicine Theranostics in which physicians, scientists, patients, people supporting patients, and industrial people gather. To promote TRTwith supports from the government, the preparatory committee for the establishment of Japan Foundation of Medical Isotope Development (JAFMID) was launched. I would like to call TRT “Precision Nuclear Medicine.” When we can add genomic information here, we can put it to new stage of cancer therapy. It is time for us.


Subject(s)
Humans , Asian People , Japan , Nuclear Medicine , Precision Medicine , Social Control, Formal , Theranostic Nanomedicine
18.
Korean Journal of Nuclear Medicine ; : 38-41, 2019.
Article in English | WPRIM | ID: wpr-786448

ABSTRACT

Nuclear medicine has been offering diagnostic and therapeutic solution since the introduction of radioactive iodine for thyroid diseases since decades. However, the concept of theranostics has given a new found impetus to the use of pairs of radiopharmaceuticals for diagnosis and treatment. Presented here is a perspective on theranostics from Pakistan.


Subject(s)
Diagnosis , Iodine , Nuclear Medicine , Pakistan , Radiopharmaceuticals , Theranostic Nanomedicine , Thyroid Diseases
19.
Korean Journal of Nuclear Medicine ; : 42-46, 2019.
Article in English | WPRIM | ID: wpr-786447

ABSTRACT

Prostate cancer is third common malignancy in men of old age (average 65 years) in Myanmar. Currently, serum PSA and bone scan are the markers of choice. Because of the evidence-based, promising success of ⁶⁸Ga-PSMA PET-CT and 177Lu-PSMA theranostics in prostate cancer worldwide, (99m)Tc-PSMA SPECT-CT imaging and ¹⁷⁷Lu-PSMA therapy has launched as a stepping-stone of theranostics in Myanmar with the available facilities. Twelve cases of prostate cancer patients were imaged with 600 MBq of (99m)Tc-PSMA I+S SPECT-CT. Four metastatic castration resistant prostate cancer (MCRPC) patients with abnormal result were treated with ¹⁷⁷Lu-PSMA. The protocol consists of 6–8 GBq of ¹⁷⁷Lu-PSMA, three successive doses at interval of 4–6 weeks. Post-therapy SPECT-CT imaging was done. All treated patients were improved by free of bone pain, and fall/rise in serum PSA level. Two patients with extensive skeletal metastases succumbed to complications. The results are well documented and present at the multidisciplinary conferences for clinical awareness. Theranostics in prostate cancer with available facilities is an additional boon to our health care professionals to upgrade cancer management in Myanmar. This paper provides the technology with cost effectiveness and benefit to prostate cancer patients of Myanmar.


Subject(s)
Humans , Male , Castration , Congresses as Topic , Cost-Benefit Analysis , Delivery of Health Care , Myanmar , Neoplasm Metastasis , Prostatic Neoplasms , Theranostic Nanomedicine
20.
Malaysian Journal of Health Sciences ; : 1-16, 2019.
Article in English | WPRIM | ID: wpr-751326

ABSTRACT

@#LncRNAs (Long noncoding RNAs) are novel group of ncRNAs and has been discovered to be pervasively transcripted in the genome, characterized as endogenous cellular RNAs consist of more than 200 nucleotides. They are ordered in view of function, transcript length, relation with protein-coding genes and other functional DNA elements, and subcellular localization. Theranostics is a novel study in medicine that combines specific targeted biomolecules based upon molecular-based test. As novel finding in the field of molecular medicine, lncRNA is indispensable tools in theranostics based medicine that allows specific targeting of molecular pathway for diagnostics and therapeutics. LncRNAs may execute as signals, decoys, guides, and scaffolds in their natural capacities. LncRNA expression is controlled by transcriptional and epigenetic factors and processes. LncRNAs also relate detracting biological programs. Here we reviewed lncRNAs in disorders/diseasest horoughly based on CONDBITs perspectives, i.e.: cardiology, oncology, neurology and neuroscience, dermatology, the biology of molecular and bioinformatics, immunology, and technologies (related with “-omics”; transcriptomics and “nano”; nanotechnology). It was narrated the lncRNA biomarkers that abundant in cardiovascular, neurodegenerative, dermatology, and immunology perspective. However, as cancer is the most widely studied disease, more biomarkers are available for this particular case. There are abundant cancer-associated lncRNAs. The most frequent learned lncRNA molecules in cancer are HOTAIR, MALAT1, LincRNA-p21, H19, GAS5, ANRIL, MEG3, XIST, HULC. LncRNAs in cancer diagnosis and monitoring, e.g.: H19 and AA174084 (gastric), HULC (hepatocellular), PCA3 (prostate). Prognostic lncRNAs, e.g.: HOTAIR and NKILA (breast), MEG3 (meningioma), NBAT-1 (neuroblastoma), SCHLAP1 (prostate). LncRNAs predicting therapeutic responsiveness, e.g.: CCAT1 (colorectal), HOTAIR (ovarian). Thus, it is concluded that the CONDBIT perspective is useful to describe the encouraging outlook of this transcriptomics-based medicinal approach.

SELECTION OF CITATIONS
SEARCH DETAIL